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Light rays, ABCD matrix and thin lens
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Contents

 Light rays and two basic laws
 Ray tracing (ABCD matrix)
 Thin lens for imaging



4

 Light rays
 Law of reflection
 Law of refraction
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Light rays

 A simplified representation in describing light propagation
 Light travel as a straight line



6

Optical path length

 Within a medium, the effective length light travels

d ???

n
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Refractive index

 Tell light how dense the medium is
 The ratio between speed of light in vacuum to in a medium
 Determines the speed of light
 Used to change the direction of light ray

c n
v

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Two basic laws

 Law of reflection

 Law of refraction (Snell’s law)

in
out

in out 

1

2

1 1 2 2sin sinn n n1

n2
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Parallel plates

 Use the two laws
 How are the input and output rays related?
 What are potential applications?
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Prism

Deviation angle: 

n > n’ ?
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Thin lens

 Three major rays
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Thin lens

 Three major rays
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Thin lens sequence?

 What if you have two lenses?
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 Ray tracing
 Ray vector
 ABCD matrix
 The lens law
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Ray optics

We'll define light rays as directions in space, corresponding, 
roughly, to k-vectors of light waves. 

We won’t worry about the phase.  

Each optical system will have an axis, and all light rays will be 
assumed to propagate at small angles to it.  This is called the 
Paraxial Approximation.

axis
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The ray vector
A light ray can be defined by two co-ordinates:

xin, in

xout, out

its position, x

its slope, 

Optical axis

x



These parameters define a ray vector,          
which will change with distance and as 
the ray propagates through optics.

x

 
 
 
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Ray matrices

For many optical components, we can define 2 x 2 ray matrices.

An element’s effect on a ray is found by multiplying its ray vector.

Ray matrices
can describe
simple and com-
plex systems.

These matrices are often called ABCD Matrices.

in

in

x

 
 
 

A B
C D
 
 
 

Optical system ↔ 2 x 2 Ray matrix

out

out

x

 
 
 
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Matrix for cascaded elements

3 2 1 3 2 1
out in in

out in in

x x x
O O O O O O

  
                

        

Notice that the order looks opposite to what it should be, 
but it makes sense when you think about it.

O1 O3O2
in

in

x

 
 
 

out

out

x

 
 
 
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The ABCD matrix

We can write these 
equations in matrix 
form.out in

out inD
B x

C
x A
 
    

    
    

out

in







out

in

x
x




out

inx



out

in

x





angular 
magnification

spatial 
magnification

out i
outout

i n
i

n i
n nx x xx

x



 







out in i
outut

nin i

o
nx

x



 

 






Since the displacements and 
angles are assumed to be small, 
we can think in terms of partial 
derivatives.
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Ray matrix for free space or a medium

If xin and in are the position and slope upon entering, let xout and 
out be the position and slope after propagating from z = 0 to z.

out in in

out in

x x z 
 

 
xin, in

z = 0

xout out

z
1

   
0 1

out in

out in

x xz
 
    

    
    

1
=  

0 1space

z
O

 
 
 
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Ray matrix for an interface

At the interface, clearly:

xout = xin.  

Now calculate out. 

Snell's Law says:    n1 sin(in) =   n2 sin(out)

Paraxial Approximation: n1 in =  n2 out

 out =   [n1 / n2]in

in

n1

out

n2

xin xout

1 2

1 0
0 /interfaceO

n n
 

  
 
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Ray matrix for a curved mirror

Like a lens, a curved mirror will focus a beam. Its focal length is R/2.

Note that a flat mirror has R = ∞ and hence an identity ray matrix.

1 ( )
2 /

out s in s s

in inx R
     


    
  

Consider a mirror with radius of curvature, R, with its optic axis 
perpendicular to the mirror:

in

out

xin = xout

1
s

R

z

1

1 /in s s inx R     

1 0
 = 

2 / 1mirrorO
R

 
  





23

Ray matrix for a curved interface

At the interface:   xout = xin

1 = in+ s and 2 = out+ s

in

n1

out

n2

xin

1
2

s

R

z

s

z = 0 z

s = xin /R

Snell's Law:   n1 1 =  n2 2

1 = in+ xin / R  and 2 = out+ xin / R

1 2( / )( / ) /out in in inn n x R x R    

1 2( / ) ( / )in in out inn x R n x R    

1 2 1 2( / 1) / ( / )out in inn n x R n n     1 2 1 2

1 0
( / 1)/ /curved

interface
O

n n R n n
 

  

Paraxial Approximation:
xin<<R
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A thin lens is just two curved interfaces

1 2 1 2

1 0
( / 1) / /curved

interface
O

n n R n n
 

   

We’ll neglect the glass in between (it’s a really 
thin lens!), and we’ll take n1 = 1.

2 1 2 1

1 0 1 0
( 1) / (1/ 1) / 1/thin lens curved curved

interface interface
O O O

n R n n R n
   

         

2 1 2 1

1 0 1 0
( 1) / (1/ 1) / (1/ ) ( 1) / (1 ) / 1n R n n R n n n R n R
   

            

2 1( 1)(1
1 0

1/ 1/ )n R R 
 

  
 

1 0
11/ f

 
 
 

This can be written:

1 21/ ( 1)(1/ 1/ )f n R R   The Lens-Maker’s Formulawhere:

n=1

R1 R2

n≠1
n=1

Meaning of negative sign?
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Sign conventions for curved interface

R: + if C is right of V
- if C is left of V

Assuming light propagates from left to right
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Types of lenses

Which type of lens to use (and how to orient it) depends on the 
aberrations and application.

Lens nomenclature
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Ray matrix for a lens

The quantity, f, is the focal length of the lens. It’s the single most 
important parameter of a lens. It can be positive or negative.

1 0
=  

-1/ 1lensO
f

 
 
 

If f > 0, the lens deflects 
rays toward the axis. 

f > 0

If f < 0, the lens deflects 
rays away from the axis.

f < 0
R1 > 0
R2 < 0

R1 < 0
R2 > 0











21

11)1(1
RR

n
f l

What happens if environment is not air?
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Effect of a lens: focusing A=0

01 1 0 0
/0 1 1/ 1 0 1/ 1 0

out in in

out in

x f x f x
x ff f

         
                      

f

f

At the focal plane, all rays 
converge to the z axis (xout = 0) 
independent of input position.

A lens followed by propagation of one focal length:

Assume all input 
rays have in = 0

For all rays 
xout = 0!

Looking from right to left, rays diverging from a point are made parallel.
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Effect of a lens

 Parallel rays at a different angle focus at a different xout.

0
1/ 1

out in

out in

x xf
f 

    
        

in

in
in

f
x
f





 
  
  
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Locating the image: matrix perspective

 Let’s verify the three major rays
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A system images an object when B = 0

When B = 0, all rays from a 
point xin arrive at a point xout, 
independent of angle.

xout = A xin B = 0, A is the magnification

0out in in

out in in in

x x AxA
Cx DC D  

      
              



32

 
/

1/ 1/ 1/
0  

o i o i

o i o i

B d d d d f
d d d d f
   

  

 if11
    

1/ 1 /0 1

1 / /
    

1/ 1 /

oi

o

i o i o i

o

dd
f d f

d f d d d d f
f d f

  
        

   
    

The Lens Law

From the object to the image:

1) A distance do
2) A lens of focal length f
3) A distance di

1 1 1

o id d f
 

The Lens Law

1 1 0 1
0 1 1/ 1 0 1

i od d
O

f
     

           
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Imaging magnification

1 1 1

o id d f
 

1 11 / 1i i
o i

A d f d
d d
 

     
 

 i

o

dM
d

 

If the imaging condition is satisfied:

1 / 0
1/ 1 /

i

o

d f
O

f d f
 

    

1 11 / 1o o
o i

D d f d
d d
 

     
 

1/o

i

d M
d

  

0
1/ 1/
M

O
f M

 
   

So:


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Negative-f lenses have virtual images, and positive-f lenses do also if the 
object is less than one focal length away.

Object

f > 0

Virtual 
image

Virtual Images

f < 0

Virtual 
image

Simply looking at a flat mirror yields a virtual image.

The outgoing rays from a point on the object never actually intersect 
at a point but can be traced backwards to one. 

Object infinitely 
far away



35

Summary: image magnification, location

f f
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Lens sequence
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Consecutive lenses

2 1 1 2

1 0 1 0 1 0
=  =  

1/ 1 1/ 1 1/ 1/ 1totO
f f f f

     
             

f1 f2

Suppose we have two lenses right next 
to each other (with no space in between)

tot 1 21/ = 1/ + 1/f f f

So two consecutive lenses act as one whose focal 
length is computed by the resistive sum.


