
7.3 Dielectric Slab Waveguide

We will now examine the waveguide properties of a “slab” of dielectric material.
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Two key concepts concerning dielectric waveguides deserve attention. The first is that, due to the symmetry
of the geometry, the fields will either be symmetric or anti-symmetric about thex-z plane. The second is
that in order for the field to be guided by the high-permittivity dielectric slab, the fields outside the slab must
be evanescent,i.e. they decay in they direction. What we will have inside the slab is a plane wave that
bounces back and forth due to total internal reflection. We will use these observations in the formulations
that follow.

7.3.1 TE Modes

The electric field for the TE modes must satisfy the homogeneous wave equation. Our experience with the
parallel plate waveguide tells us what the solutions must be (before application of the boundary conditions).
However, our argument about symmetry makes it so that within the slab, the variation will either besin kyy
or cos kyy (recall that in general, the field variation can be a combination of these two). Therefore, the
electric field can be written as

E = x̂
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(7.69)

where the top and bottom lines in the braces refer to the antisymmetric and symmetric modes, respectively.
Using Faraday’s law, we can now compute the magnetic fields
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(7.70)

155



Note that in these field expressions, we have used that thez variation ise−jkzz both inside and outside the
slab. How do we know that this propagation constant is the same in both regions? Note also that we have
four unknowns:E1/E0, ky, α, andkz.

Since these fields must obey the wave equation (with∂2/∂x2 = 0), we know that:

k2
y + k2

z = k2
1 = ω2µε1 (7.71)

−α2 + k2
z = k2

2 = ω2µ0ε2 (7.72)

which gives us two constraints for determining our unknowns. We need two additional constraints in order
to find all four unknowns.

Let’s start by enforcing continuity of tangential electric fields at the dielectric-air interface. We will first
consider the symmetric modes. Therefore, aty = d

E0 cos(kyd)e−jkzz = E1e
−αde−jkzz → cos(kyd)E0 = e−αdE1 (7.73)

Note that applying continuity aty = −d results in an identical equation, so this does not help us. This stems
from the symmetry of the problem, and in reality we have already used this symmetry to break the problem
into symmetric and asymmetric modes.

Since we need one more equation, we will apply continuity of tangential (i.e. ẑ component) magnetic field
at the boundary. Aty = d we have

jky
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sin(kyd)e−jkzz = jα

E1

ωµ0
e−αde−jkzz → ky

µ
sin(kyd)E0 =

α

µ0
e−αdE1 (7.74)

and again, we get the exact same equation aty = −d. The easiest thing to do is to divide these two equations
by each other. This yields

ky

µ sin (kyd) Eo

cos (kyd) Eo
=

α
µe−αdE1

e−αdE1
(7.75)

α

µ0
=

ky

µ
tan(kyd). (7.76)

which can be re-written as

(αd) =
µ0

µ
(kyd) tan(kyd) symmetric TE modes (7.77)

Combining (7.71) and (7.72) leads to

(kyd)2 + (αd)2 = ω2µ0ε0(n2
1 − n2

2)d
2 (7.78)

Finally, we can combine these two equations to the form

tan(kyd) =

√
ω2µ0ε0(n2

1 − n2
2)d2

(kyd)2
− 1 (7.79)

1. Solutions in the range(m− 1)π/2 ≤ kyd ≤ mπ/2 m = 1, 3, 5, . . . we will call TEm modes. These
correspond to the symmetric TE modes.
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2. Cutoff occurs when the mode is no longer guided, which occurs as soon asα becomes imaginary. So,
we define cutoff as the frequency at whichα = 0. Using (7.77), this implies thattan(kyd) = 0 such
thatkyd = (m− 1)π/2, m = 1, 3, 5, . . .. Using (7.78) withα = 0 leads to

fm =
m− 1

4d

1√
µ0ε0(µrεr − 1)

(7.80)

Note thatf1 = 0, so the lowest order mode propagates at any frequency. Furthermore, since at cutoff
kz = k0 andk2

z + k2
y = k2, the angle of incidence of the wave on the dielectric boundary can be

expressed as

θi = sin−1 kz√
k2

z + k2
y

= sin−1 k0

k
= sin−1

√
µ0ε0
µε

= θc (7.81)

which you may recognize at the critical angle. So, cutoff occurs when the angle of incidence on the
boundary is smaller than the critical angle. Makes sense, doesn’t it?

Observe also that the cutoff condition ofkz = k0 means that the propagation constant becomes that
of the surrounding medium. We will revisit this below in optical fibers.

3. Note thatky is frequency dependent, unlike in the parallel plate waveguide.

4. As the frequency gets larger,α → ∞ which means that the field decays very rapidly outside the
dielectric. The behavior of the mode becomes like that of a parallel plate waveguide filled with a
dielectric.

Note that we could repeat the entire procedure for the antisymmetric TE modes. The dispersion relation
(7.78) remains the same. The guidance condition becomes

(αd) = −µ0

µ
(kyd) cot(kyd) antisymmetric TE modes (7.82)

Again, cutoff occurs forkyd = (m− 1)π/2, m = 2, 4, 6, . . .. These are therefore the even order TE modes.

We can solve these nonlinear transcendental equations using a nonlinear solver on a computer or calculator.
We can also solve these equations graphically. We will plot each equation separately with plot axes ofkyd
andαd. Think of kyd ≡ x andαd ≡ y. The various equations then become

(αd) =
µ0

µ
(kyd) tan(kyd) symmetric TE modes (7.83)

y = x tan(x), (7.84)

((αd) = −µ0

µ
(kyd) cot(kyd) antisymmetric TE modes (7.85)

y = −x cot(x) (7.86)

and

(kyd)2 + (αd)2 = ω2µoεo

(
n2

1 − n2
2

)
d2 (7.87)

x2 + y2 = (kod)2
(
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2

)
(7.88)
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7.3.2 TM Modes

We can repeat the whole process for TM modes. In this case, we have

H = x̂
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where the top and bottom lines in the braces refer to the antisymmetric and symmetric modes, respectively.
Using Ampere’s law, we can now compute the electric fields

E =
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∇×H =
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(7.90)

We go through the exact same sequence of steps for this case. The dispersion relations remain the same.
The guidance conditions become

(αd) =
ε0
ε

(kyd) tan(kyd) symmetric TM modes (7.91)

(αd) = −ε0
ε

(kyd) cot(kyd) antisymmetric TM modes (7.92)
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