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The solutions 

!  The solutions to the wave equation for the three regions have 
the form (assuming TE polarization) 

!  Substituting into the wave equation (assuming no y dependence) 

!  We can solve the second-order differential equation (with 
constant coefficients) for Ey 
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Symmetric slab waveguide solutions 

!  The solutions are sinusoidal or exponential according to 

Sinusoidal  ki
2 > β2 

Exponential  ki
2 < β2 

!  Guided modes:  cladding region has exponential solutions β 

> k2 > k3 while core region has sinusoidal solutions β < k1 

!  For x → ±∞, we require the solutions to remain finite. 

!  The solutions have the general form (assuming n2 = n3):   

Cladding (x ≥ 0) 

Core (-d ≤ x ≤ 0) 

Cladding (x ≤ -d)  
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Symmetric slab waveguide solutions 

!  The transverse propagation constants 

κ = (β2 – k2
2)1/2 

h = (k1
2 – β2)1/2 = k1cosθ


!  In order to determine the allowed β and the unspecified 
constants A, B, C and D, we need to match the solution in 
cladding with the solution in core. 

!  Therefore, boundary conditions must be specified at the 
core-cladding interfaces.   

!  We expect at least one arbitrary constant in the final solution 
given by the overall field strength. 

h 

β


k1 θ


iκ


β


k2 

x=0 

x=-d 
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Boundary conditions 

!  Ey continuous at x = 0 → A = B 

!  ∂Ey/∂x (Hz) continuous at x = 0 → C = (-κ/h)A 

!  Ey continuous at x=-d → D = A cos(hd) + (κA/h) sin(hd) 

!  ∂Ey/∂x (Hz) continuous at x=-d → tan(hd) = 2κh / (h2 – κ2)  

 The first three results can be used to solve the electric field 
distributions within the waveguide core and cladding. 

 The fourth result gives a transcendental equation that allows 
us to solve for the allowed β graphically.  
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TE mode field distributions in a symmetric slab waveguide 

!  Note that all the electric field distributions propagate along 

the z-direction because of the factor exp i(βz - ωt) even 

though the cladding field decays exponentially in the 

transverse direction.   

!  Next we solve for the allowed β, κ and h. 

x ≥ 0


d ≤ x ≤ 0


x ≤ d
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Eigenvalue equations for symmetric slab waveguides 

•   The transverse resonance condition for a symmetric waveguide 

2k1d cos θ + 2ϕ(θ) = 2mπ


•   The reflection phase angle for the TE polarization (s wave) is given as 

   (see lecture 1)  

tan (ϕTE/2) = (n1
2 sin2θ - n2

2)1/2 / (n1 cos θ) 

•   The reflection phase angle for the TM polarization (p wave) is given as 

tan (ϕTM/2) = (n1
2/n2

2) (n1
2 sin2θ - n2

2)1/2 / (n1 cos θ) 

k1 θ

d 
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=>   k1d cos θ - mπ = -ϕ(θ) = ϕTE,TM(θ) 


(k1d cos θ)/2 – mπ/2 = ϕTE,TM/2 


tan [(k1d cos θ)/2 – mπ/2] = tan(ϕTE,TM/2) 


=>   

=>   

tan [(k1d cos θ)/2  mπ/2] = (n1
2 sin2θ - n2

2)1/2 / (n1 cos θ)  

m = 0, 1, 2, …, 

Recall the reflection coefficient rTE = exp –iϕTE=>  ϕ(θ) = -ϕTE(θ) 

tan [(k1d cos θ)/2 - mπ/2] = (n1
2/n2

2) (n1
2 sin2θ - n2

2)1/2 / (n1 cos θ) 

rTM = -exp –iϕTM=>  ϕ(θ) = -ϕTM(θ) 

TE: 

TM: 

Eigenvalue equations for symmetric slab waveguides 
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Normalized waveguide parameters 

!  The mode properties of a waveguide are commonly characterized 
in terms of dimensionless normalized waveguide parameters.   

!  The normalized frequency, also known as the V number, of a 
step-index planar waveguide is defined as  

V = (2π/λ) d (n1
2 – n2

2)1/2 = (ω/c) d (n1
2 – n2

2)1/2 

 where d is the core thickness (or diameter in the case of optical 
fibers). 

!  The propagation constant β can be represented by the normalized 
guide index: 

b = (β2 – k2
2)/(k1

2 – k2
2) = (neff

2 – n2
2)/(n1

2 – n2
2)  

 recall neff = cβ/ω = βλ/2π is the effective refractive index of the 
waveguide mode that has a propagation constant β. 
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Eigenvalue equations in terms of normalized frequency   

tan (hd/2  mπ/2) = (V2 – h2d2)1/2/hd  

m = 0, 1, 2, …, 

 tan (hd/2 - mπ/2) = (n1
2/n2

2) (V
2 – h2d2)1/2/hd 

TE: 

TM: 

•  The eigenvalue equations are in the form of transcendental 
equations, which are usually solved graphically by plotting their 
left- and right-hand sides as a function of hd.  

•   The solutions yield the allowed values of hd for a given value of 
the waveguide parameter V for TE/TM modes. 
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•  Consider a weakly guiding waveguide n1 – n2 << n1   

•  Here we choose n1 = 3.6 and n2 = 3.55.  These values are  

  characteristic of an AlGaAs double heterojunction light-emitting diode  

  or laser diode. 

•   The critical angle for this structure is θc =  sin-1(n2/n1)  ~  80o   

•   The range of angles for trapped rays is then     80o ≤ θ ≤ 90o. 

•   The range of waveguide effective refractive index is 3.55 ≤ neff ≤ 3.6 

Example #1: Symmetric weakly guiding slab waveguides 
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Graphic solutions for the eigenvalues of guided TE and TM 

modes of a weakly guiding symmetric slab waveguide 

hd 

n1 = 3.6, n2 = 3.55, V = 5π


m = 0 1 2 3 4 5 

TE 

TM 

tan (hd/2 - mπ/2) 

V=5π
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Mode chart for the first six TE and TM modes (m = 0 – 5) of 

symmetric slab waveguides in AlGaAs (n1 = 3.6, n2 = 3.55) 
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V = 5π
(V = π)


Cut-off for m = 1 

(neff = n2) 

(neff = n1) 
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•  Consider a strongly guiding waveguide n1 – n2 >> 0   

•  Here we choose n1 = 3.5 and n2 = 1.45.  These values are  

  characteristic of an silicon-on-insulator (SOI) waveguide. 

•   The critical angle for this structure is θc =  sin-1(n2/n1)  ~  24.5o   

•   The range of angles for trapped rays is then     24.5o ≤ θ ≤ 90o. 

•   The range of waveguide effective refractive index is 1.45 ≤ neff ≤ 3.5 

Example #2:  Symmetric strongly guiding slab waveguides 
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Graphic solutions for the eigenvalues of guided TE and TM 

modes of a strongly guiding symmetric slab waveguide 

hd 

n1 = 3.5, n2 = 1.45, V = 5π


m = 0 1 2 3 4 5 

TE 

TM 

tan (hd/2 - mπ/2) 
V=5π


64 

Mode chart for the first six TE and TM modes (m = 0 – 5) of 

symmetric slab waveguides in SOI (n1 = 3.5, n2 = 1.45) 
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(neff = n2) 

(neff = n1) 

V = 5π
(V = π)


Cut-off for m = 1 
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•   When the V number is very small (e.g. d/λ << 1), the guided ray  

travels close to the critical angle (b << 1) .  The effective index is close  

to that of the cladding layer n2. 

=>The wave penetrates deeply into the cladding layers, because the rays  

are near the critical angle.  The evanescent decay is slow. 

•   As the V number increases, the ray travels more nearly parallel to the  

waveguide axis, and the effective refractive index lies between n1 and n2. 

•   For a very large V number (e.g. d/λ >> 1) the effective index is near  

that of the core index n1.  The wave in the cladding layer decays very  

rapidly for evanescent waves traveling at angles far above the critical  

angle. 

Normalized guide index vs. V number 
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•   For example, consider V = 15 on the mode chart, the TE5/TM5 modes  

could not propagate because V was not large enough to intersect with the 

b vs. V curves.   

=>  The TE5/TM5 modes, and all higher-ordered modes, are cut off.   

•   Cutoff occurs when the propagation angle for a given mode just equals  

the critical angle θc --- a guided mode transits to an unguided radiation  

mode.  

•   This corresponds to the condition that β = k2 (b = 0) and κ = 0.   

•   The fields extend to infinity for κ = 0 (i.e. the fields become unguided!).  

This defines the cutoff condition for guided modes.   

Cutoff conditions 
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Cutoff conditions 

!  The cutoff value V = Vc for a particular guided mode is the 
value of V at the point where b = 0 (i.e. the b vs. V relation 
intersects with the axis b = 0). 

!  For κ = 0,  

V2 ≡ k1
2d2 – k2

2d2 = k1
2d2 – β2d2 = h2d2 

⇒  Vc = hd 

 Substitute this relation to the TE/TM modes eigenvalue 
equations: 

tan (hd/2 - mπ/2) = 0 

=> Vc = mπ, m = 0, 1, 2, …   
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Number of modes 

!  TE and TM modes of a symmetric waveguide have the same 
cutoff condition: 

   Vc = mπ 
for the mth TE and TM modes 

!  Because cutoff of the fundamental mode (TE0/TM0) occurs at 
zero thickness (V = 0), neither fundamental TE nor 
fundamental TM mode in a symmetric waveguide has cutoff.   

 =>  Any symmetric dielectric waveguide supports at least one 
TE and one TM mode.   

!  The number of TE modes supported by a given symmetric 
waveguide is the same as that of the TM modes and is 

MTE = MTM = [V/π]integer 
Nearest integer larger than 

the bracket value 
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e.g.  Find the number of TE/TM modes in an AlGaAs waveguide if d = 1.64 µm.  

The free-space wavelength is λ = 0.82 µm.  V = (2πd/λ) (n1
2-n2

2)1/2 ≈ 7.5.  MTE = 

MTM = [7.5/π]int = 3.  For this value, the mode chart yields three solutions – TE0/

TM0, TE1/TM1, and TE2/TM2. 

Number of modes 
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•   A multimode waveguide is one that supports more than one  

propagating mode. 

•   For a multimode waveguide, at a fixed thickness the higher-ordered  

modes propagate with smaller β values than the lower-ordered modes. 

d 

*If we wish to propagate only the TE0/TM0 mode, then we must have 

V  <  π


=>  This cuts off the m = 1 mode and all higher-order modes. 

single-mode condition 

Higher-order 

lower-order 

Singlemode vs. multimode waveguides 
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•   For the weakly guiding AlGaAs waveguide, TE and TM modes have  

about the same effective index and propagation angle, but their electric- 

field vectors point in orthogonal directions. 

•   Two modes having the same propagation constant β are said to be  

degenerate.  In the example of AlGaAs waveguide, TE and TM modes  

of the same order are nearly degenerate. 

•   Even when n1 is not close to n2 (i.e. high-index contrast), the cutoff  

values for the TEm and TMm mode are still the same  

(Vc = mπ still applies for the TE/TM modes in high-index contrast  

waveguides.)      

⇒ The number of propagating TM modes equals that of the TE modes. 

(i.e. the total number of allowed modes is twice the number of modes 

found from the equation [V/π]int)     

Further remarks on TE/TM mode charts 
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Remarks on modes in asymmetric slab waveguides 

•   Cutoff of the fundamental mode (TE0/TM0) does not occur at zero  

thickness (V = 0), as it does for the symmetric case. 

•   Because the core n1 and the cladding n2 and n3 are all different, the  

TE and TM modes are not degenerate.  A truly singlemode  

waveguide exists if the TM0 mode (but not the TE0 mode) is cut off. 

•   Integrated optic circuits often adopt asymmetric waveguide structures  

and normally singlemode waveguiding is desirable  

(the tradeoff is that the waveguides become polarization dependent and  

only one polarization mode propagates!)  

•   Mode patterns for the asymmetric waveguide are similar to those of  

the symmetric waveguide, except that the asymmetry causes the fields  

to have unequal amplitudes at the two boundaries and to decay at  

different rates in the two cladding layers.     
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General formalisms for step-

index planar waveguides 

for asymmetric and symmetric slab waveguides 


