The solutions

□ The solutions to the wave equation for the *three* regions have the form (*assuming TE polarization*)

$$E = \hat{y}E_{y}(x)\exp i(\beta z - \omega t)$$

□ Substituting into the wave equation (*assuming no y dependence*)

$$\frac{\partial^2 E_y}{\partial x^2} + (k_i^2 - \beta^2)E_y = 0$$

□ We can solve the second-order differential equation (*with* constant coefficients) for E_v

$$E_y \propto \exp\left(\pm ix\sqrt{k_i^2 - \beta^2}\right)$$

Symmetric slab waveguide solutions

□ The *transverse* propagation constants

$$\kappa = (\beta^2 - k_2^2)^{1/2} \qquad \qquad \overbrace{k_1 \theta}^{\beta} h \qquad x=0$$

$$h = (k_1^2 - \beta^2)^{1/2} = k_1 \cos\theta \qquad \overbrace{\beta}^{k_1 \theta} h \qquad x=-d$$

- □ In order to determine the *allowed* β and the unspecified constants A, B, C and D, we need to match the solution in cladding with the solution in core.
- □ Therefore, *boundary conditions* must be specified at the core-cladding interfaces.
- □ We expect at least *one* arbitrary constant in the final solution given by the overall field strength.

Symmetric slab waveguide solutions

□ The solutions are *sinusoidal* or *exponential* according to

Sinusoidal $k_i^2 > \beta^2$ Exponential $k_i^2 < \beta^2$

- □ **Guided modes**: cladding region has *exponential* solutions $\beta > k_2 > k_3$ while core region has *sinusoidal* solutions $\beta < k_1$
- \square For $x \rightarrow \pm \infty$, we require the solutions to remain finite.
- \square The solutions have the general form (*assuming* $n_2 = n_3$):

Cladding $(x \ge 0)$ $E_y = A \exp(-\kappa x)$ Core $(-d \le x \le 0)$ $E_y = B \cos(hx) + C \sin(hx)$ Cladding $(x \le -d)$ $E_y = D \exp(\kappa(x+d))$

Boundary conditions

- $\Box \quad E_{v} continuous at x = 0 \rightarrow A = B$
- $\Box \quad \partial E_v / \partial x (H_z) \text{ continuous at } x = 0 \rightarrow C = (-\kappa/h)A$
- \Box E_v continuous at x=-d \rightarrow D = A cos(hd) + (κ A/h) sin(hd)
- $\Box \quad \partial E_v / \partial x (H_z) \text{ continuous at } x = -d \rightarrow \tan(hd) = 2\kappa h / (h^2 \kappa^2)$

The first *three* results can be used to solve the <u>electric field</u> <u>distributions</u> within the waveguide core and cladding.

The *fourth* result gives a *transcendental* equation that allows us to solve for the <u>allowed β </u> graphically.

50

k₂ ik

TE mode field distributions in a symmetric slab waveguide

 $x \ge 0$ $E = \hat{y}A \exp(-\kappa x) \exp i(\beta z - \omega t)$

$$-d \le x \le 0 \qquad E = \hat{y}A[\cos(hx) - \frac{\kappa}{h}\sin(hx)]\exp i(\beta z - \omega t)$$

 $x \le -d$ $E = \hat{y}A \exp(\kappa(x+d)) [\cos(hd) + \frac{\kappa}{h}\sin(hd)] \exp i(\beta z - \omega t)$

□ Note that *all* the electric field distributions propagate along the z-direction because of the factor exp $i(\beta z - \omega t)$ even though the cladding field decays exponentially in the transverse direction.

54

56

 $\square \quad \text{Next we solve for the allowed } \beta, \kappa \text{ and } h.$

Eigenvalue equations for symmetric slab waveguides

• The transverse resonance condition for a symmetric waveguide

 $2k_1d\cos\theta + 2\varphi(\theta) = 2m\pi$

$$\theta$$
 d

55

• The *reflection phase angle* for the TE polarization (s wave) is given as (see lecture 1)

 $\tan (\phi_{TE}/2) = (n_1^2 \sin^2\theta - n_2^2)^{1/2} / (n_1 \cos \theta)$

• The reflection phase angle for the TM polarization (p wave) is given as

$$\tan \left(\varphi_{\text{TM}} / 2 \right) = \left(n_1^2 / n_2^2 \right) \left(n_1^2 \sin^2 \theta - n_2^2 \right)^{1/2} / \left(n_1 \cos \theta \right)$$

Eigenvalue equations for symmetric slab waveguides

Recall the reflection coefficient $r_{TE} = exp -i\phi_{TE} = -\phi_{TE}(\theta)$ $r_{TM} = -exp -i\phi_{TM} = -\phi_{TM}(\theta)$

$$=> k_{1}d\cos\theta - m\pi = -\phi(\theta) = \phi_{TE,TM}(\theta)$$
$$=> (k_{1}d\cos\theta)/2 - m\pi/2 = \phi_{TE,TM}/2$$
$$=> tan [(k_{1}d\cos\theta)/2 - m\pi/2] = tan(\phi_{TE,TM}/2)$$
TE:

 $\tan \left[(k_1 d \cos \theta) / 2 - m\pi / 2 \right] = (n_1^2 \sin^2 \theta - n_2^2)^{1/2} / (n_1 \cos \theta)$

TM:

 $\tan \left[(k_1 d \cos \theta) / 2 - m\pi / 2 \right] = (n_1^2 / n_2^2) (n_1^2 \sin^2 \theta - n_2^2)^{1/2} / (n_1 \cos \theta)$ m = 0, 1, 2, ...,

Normalized waveguide parameters

- □ The mode properties of a waveguide are commonly characterized in terms of *dimensionless* normalized waveguide parameters.
- □ The *normalized frequency*, also known as the *V number*, of a step-index planar waveguide is defined as

V = $(2\pi/\lambda) d (n_1^2 - n_2^2)^{1/2} = (\omega/c) d (n_1^2 - n_2^2)^{1/2}$

where d is the core thickness (*or diameter in the case of optical fibers*).

□ The propagation constant β can be represented by the *normalized guide index*:

 $b = (\beta^2 - k_2^2)/(k_1^2 - k_2^2) = (n_{eff}^2 - n_2^2)/(n_1^2 - n_2^2)$

recall $n_{eff} = c\beta/\omega = \beta\lambda/2\pi$ is the *effective refractive index* of the waveguide mode that has a propagation constant β .

Eigenvalue equations in terms of normalized frequency

TE: $\tan (hd/2 - m\pi/2) = (V^2 - h^2d^2)^{1/2}/hd$ TM: $\tan (hd/2 - m\pi/2) = (n_1^2/n_2^2) (V^2 - h^2d^2)^{1/2}/hd$ m = 0, 1, 2, ...,

• The eigenvalue equations are in the form of *transcendental* equations, which are usually solved graphically by plotting their left- and right-hand sides as a function of hd.

• The solutions yield the *allowed values of hd* for a given value of the waveguide parameter V for TE/TM modes.

58

60

Example #1: Symmetric weakly guiding slab waveguides

- Consider a *weakly guiding* waveguide $n_1 n_2 \ll n_1$
- Here we choose $n_1 = 3.6$ and $n_2 = 3.55$. These values are characteristic of an <u>AlGaAs double heterojunction light-emitting diode</u> or laser diode.
- The critical angle for this structure is $\theta_c = \sin^{-1}(n_2/n_1) \sim 80^{\circ}$
- The range of angles for trapped rays is then $80^\circ \le \theta \le 90^\circ$.
- The range of *waveguide effective refractive index* is $3.55 \le n_{eff} \le 3.6$

Graphic solutions for the eigenvalues of guided TE and TM modes of a weakly guiding symmetric slab waveguide

 $n_{1} = 3.6, n_{2} = 3.55, V = 5\pi$ $tan (hd/2 - m\pi/2)$ $V = 5\pi$ m = 0 1 2 3 4 5 TE TE Hd

Mode chart for the first six TE and TM modes (m = 0-5) of symmetric slab waveguides in AlGaAs (n₁ = 3.6, n₂ = 3.55)

Example #2: Symmetric strongly guiding slab waveguides

- Consider a *strongly guiding* waveguide $n_1 n_2 >> 0$
- Here we choose $n_1 = 3.5$ and $n_2 = 1.45$. These values are characteristic of an <u>silicon-on-insulator (SOI)</u> waveguide.
- The critical angle for this structure is $\theta_c = \sin^{-1}(n_2/n_1) \sim 24.5^{\circ}$
- The range of angles for trapped rays is then $24.5^{\circ} \le \theta \le 90^{\circ}$.
- The range of *waveguide effective refractive index* is $1.45 \le n_{eff} \le 3.5$

62

Graphic solutions for the eigenvalues of guided TE and TM modes of a strongly guiding symmetric slab waveguide

Mode chart for the first six TE and TM modes (m = 0-5) of symmetric slab waveguides in SOI (n₁ = 3.5, n₂ = 1.45)

Normalized guide index vs. V number

• When the V number is *very small* (e.g. $d/\lambda \ll 1$), the guided ray travels *close to the critical angle* (b $\ll 1$). The effective index is close to that of the cladding layer n_2 .

=>The wave penetrates deeply into the cladding layers, because the rays are near the critical angle. The evanescent decay is slow.

• As the V number increases, the ray travels more nearly parallel to the waveguide axis, and the effective refractive index lies between n_1 and n_2 .

• For a *very large* V number (e.g. $d/\lambda >> 1$) the effective index is near that of the core index n_1 . The wave in the cladding layer decays very rapidly for evanescent waves traveling at angles far above the critical angle.

Cutoff conditions

- For example, consider V = 15 on the mode chart, the TE_5/TM_5 modes could not propagate because V was not large enough to intersect with the b vs. V curves.
- => The TE_5/TM_5 modes, and *all higher-ordered modes*, are *cut off*.

• *Cutoff* occurs when the propagation angle for a given mode just equals the *critical angle* θ_c --- a guided mode transits to an *unguided* radiation mode.

• This corresponds to the condition that $\beta = k_2$ (b = 0) and $\kappa = 0$.

• The fields *extend to infinity* for $\kappa = 0$ (i.e. the fields become <u>unguided</u>!). This defines the *cutoff condition* for guided modes.

Cutoff conditions

- □ The cutoff value $V = V_c$ for a particular guided mode is the value of V at the point where b = 0 (i.e. the b vs. V relation intersects with the axis b = 0).
- \square For $\kappa = 0$,

$$V^2 \equiv k_1^2 d^2 - k_2^2 d^2 = k_1^2 d^2 - \beta^2 d^2 = h^2 d^2$$

 \Rightarrow V_c = hd

Substitute this relation to the TE/TM modes eigenvalue equations:

 $\tan(hd/2 - m\pi/2) = 0$

$$=> V_c = m\pi, m = 0, 1, 2, \dots$$

Number of modes

□ TE and TM modes of a *symmetric* waveguide have the *same* cutoff condition:

$$V_c = m\pi$$
 for the m_{th} TE and TM modes

- □ Because cutoff of the fundamental mode (TE₀/TM₀) occurs at zero thickness (V = 0), neither fundamental TE nor fundamental TM mode in a symmetric waveguide has cutoff.
 => Any symmetric dielectric waveguide supports at least one <u>TE</u> and <u>one TM mode</u>.
- □ The number of TE modes supported by a given symmetric waveguide is the same as that of the TM modes and is

$$M_{TE} = M_{TM} = [V/\pi]_{integer}$$
 Nearest integer larger than the bracket value

Number of modes

e.g. Find the number of TE/TM modes in an AlGaAs waveguide if d = 1.64 µm. The free-space wavelength is $\lambda = 0.82 \text{ µm}$. V = $(2\pi d/\lambda) (n_1^2 - n_2^2)^{1/2} \approx 7.5$. M_{TE} = M_{TM} = $[7.5/\pi]_{int} = 3$. For this value, the mode chart yields three solutions – TE₀/TM₀, TE₁/TM₁, and TE₂/TM₂.

Singlemode vs. multimode waveguides

• A <u>multimode waveguide</u> is one that supports more than one propagating mode.

• For a multimode waveguide, at a fixed thickness the *higher*-ordered modes propagate with *smaller* β values than the lower-ordered modes.

*If we wish to propagate <u>only the TE_0/TM_0 mode</u>, then we must have

 $V < \pi$ single-mode condition

=> This *cuts off* the m = 1 mode and *all* higher-order modes.

Further remarks on TE/TM mode charts

• For the *weakly guiding* AlGaAs waveguide, TE and TM modes have about the same *effective index* and *propagation angle*, but their electric-field vectors point in orthogonal directions.

• Two modes having the same propagation constant β are said to be *degenerate*. In the example of AlGaAs waveguide, TE and TM modes of the same order are *nearly* degenerate.

• Even when n_1 is *not* close to n_2 (i.e. high-index contrast), the cutoff values for the TE_m and TM_m mode are still the same

($V_c = m\pi \ still$ applies for the TE/TM modes in high-index contrast waveguides.)

⇒The number of propagating TM modes equals that of the TE modes. (i.e. the *total* number of allowed modes is <u>*twice*</u> the number of modes found from the equation $[V/\pi]_{int}$) ⁷¹

Remarks on modes in asymmetric slab waveguides

• Cutoff of the fundamental mode (TE_0/TM_0) does *not* occur at zero thickness (V = 0), as it does for the symmetric case.

• Because the core n_1 and the cladding n_2 and n_3 are all different, the TE and TM modes are *not* degenerate. A *truly singlemode* waveguide exists if the TM₀ mode (but not the TE₀ mode) is cut off.

• *Integrated optic circuits* often adopt *asymmetric waveguide structures* and normally *singlemode waveguiding is desirable* (the *tradeoff* is that the waveguides become <u>polarization dependent</u> and <u>only one polarization mode propagates</u>!)

• Mode patterns for the asymmetric waveguide are similar to those of the symmetric waveguide, except that the asymmetry causes the fields to have *unequal* amplitudes at the two boundaries and to decay at different rates in the two cladding layers.

General formalisms for stepindex planar waveguides

for asymmetric and symmetric slab waveguides