The Dining Philosophers
Problem



The Dining Philosophers Problem

* In this project, you need to write a program to simulate the famous
dining philosophers problem.

* This problem will require implementing a solution using Pthreads
mutex locks and condition variables.

The Dining Philosophers Problem



* Begin by creating five philosophers, each identified by a number O,
1, 2, 3 and 4. Each philosopher will run as a separate thread.

* Philosophers alternate between thinking and eating. To simulate
both activities, have the thread sleep for a random period from one
to three seconds.

* Each philosopher should think for a while and then become hungry.

* If the philosopher is able to eat, the job she should do is go sleeping.



The Dining Philosophers Problem
* When a philosopher wishes to eat, she invokes the function

pickup_forks(int philosopher_number)

* Philosopher number identifies the ID of the philosopher wishing to eat.®
When a philosopher finishes eating, she invokes

return_forks(int philosopher_number)



The Dining Philosophers Problem

* When we want to make a philosopher try to eat, she invokes the
function test(int philosopher _number)

 Since Pthreads is typically used in C programs—and since C does
not have a monitor— we accomplish locking by associating a
condition variable with a mutex lock.

* Condition variables in Pthreads use the pthread cond t data type
and are initialized using the pthread cond_init() function.



The Dining Philosophers Problem

pthread_mutex_t mutex;
pthread_cond_t cond_var;

pthread mutex_init (&mutex,NULL) ;
* E.g. pthread_cond_init (&cond_var ,NULL) ;

* The thread of each philosopher will be created and joined in order.
°0,1,2,..4

* Use a philosophers function as the input of pthread create() to control the
philosophers’ actions.



The Dining Philosophers Problem

15 void philosophers(int n)

e

* The thread of each philosopher will be created and joined in order.

°*0,1,2..4



The Dining Philosophers Problem

* Use a function as the input of pthread create() to control the philosophers’
actions.

* You should print these lines out in the correct situations:

* Philosopher %d is now THINKING for %d seconds.

* Philosopher %d is now HUNGRY and trying to pick up forks.

* Philosopher %d can’t pick up forks and start waiting.

* Philosopher %d returns forks and then starts TESTING %d and %d.

* Philosopher %d is now EATING.



The Dining Philosophers Problem

rohan@rohan-VirtualBox:~/Desktop$

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

0

A WFRFROWNLABLALBWWRPRPFPOONNSABWNRE

is
is
is
is
is
is
IS
is
IS
is

fails to pick
is now HUNGRY
fails to pick
is now HUNGRY
fails to pick
returns forks

IS

returns forks

IS

returns forks

IS

returns forks
returns forks

now
now
now
now
now
now
NOW
now
NOW
now

NOW

NOW

NOW

THINKING for
THINKING for
THINKING for
THINKING for
THINKING for
HUNGRY
EATING.
HUNGRY
EATING.
HUNGRY

and
EATING.

and
EATING.

EATING.

up forks
then

then
then

then
then

./hw3.out
2 seconds
2 seconds
1 seconds
2 seconds
3 seconds

and trying to pick up forks.

and trying to pick up forks.

and trying to pick up forks.
up forks and then starts waiting.
and trying to pick up forks.
up forks and then starts waiting.
and trying to pick up forks.
and then starts waiting.

starts TESTING 1

starts TESTING 4

starts TESTING 2

TESTING
TESTING

starts
starts




The Dining Philosophers Problem

e Hw4 {studentID}.rar:

* Hw4.c(90%)

* Hw4 report(10%)

* Tell us how you implement your homework and show us your results.

* 0 will be given to cheaters, so don’t copy & paste your friend’s code
directly.

* Deadline:5/29(WED.) 12:29

* And, of course, we will pick % of all students to demo in person.



