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The Dining Philosophers Problem

* In this project, you need to write a program to simulate the famous
dining philosophers problem.

* This problem will require implementing a solution using Pthreads
mutex locks and condition variables.
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* Begin by creating five philosophers, each identified by a number O,
1, 2, 3 and 4. Each philosopher will run as a separate thread.

* Philosophers alternate between thinking and eating. To simulate
both activities, have the thread sleep for a random period from one
to three seconds.

* Each philosopher should think for a while and then become hungry.

* If the philosopher is able to eat, the job she should do is go sleeping.
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* When a philosopher wishes to eat, she invokes the function

pickup_forks(int philosopher_number)

* Philosopher number identifies the ID of the philosopher wishing to eat.®
When a philosopher finishes eating, she invokes

return_forks(int philosopher_number)
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* When we want to make a philosopher try to eat, she invokes the
function test(int philosopher _number)

 Since Pthreads is typically used in C programs—and since C does
not have a monitor— we accomplish locking by associating a
condition variable with a mutex lock.

* Condition variables in Pthreads use the pthread cond t data type
and are initialized using the pthread cond_init() function.
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pthread_mutex_t mutex;
pthread_cond_t cond_var;

pthread mutex_init (&mutex,NULL) ;
* E.g. pthread_cond_init (&cond_var ,NULL) ;

* The thread of each philosopher will be created and joined in order.
°0,1,2,..4

* Use a philosophers function as the input of pthread create() to control the
philosophers’ actions.
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15 void philosophers(int n)

e

* The thread of each philosopher will be created and joined in order.

°*0,1,2..4
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* Use a function as the input of pthread create() to control the philosophers’
actions.

* You should print these lines out in the correct situations:

* Philosopher %d is now THINKING for %d seconds.

* Philosopher %d is now HUNGRY and trying to pick up forks.

* Philosopher %d can’t pick up forks and start waiting.

* Philosopher %d returns forks and then starts TESTING %d and %d.

* Philosopher %d is now EATING.
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e Hw4 {studentID}.rar:

* Hw4.c(90%)

* Hw4 report(10%)

* Tell us how you implement your homework and show us your results.

* 0 will be given to cheaters, so don’t copy & paste your friend’s code
directly.

* Deadline:5/29(WED.) 12:29

* And, of course, we will pick % of all students to demo in person.



