
Operating Systems hw4 105061212 王家駿

Code and description:

1. Main function and global variables:

In the main function, we create five threads for each philosopher by

pthread_create() function, and terminates with the pthread_join() function. In

addition, we use a mutex lock and five condition variables to prevent the threads from

deadlock.

2. Init function:

In the init function, we initialize the mutex lock and condition variables, and set

all the state of philosophers to thinking.

3. Philosopher thread

The thread contains the behavior of a philosopher, waiting for a few seconds to

eat, picking up the forks and starting to eat, eating for a few seconds, and return the

forks when end of eating.

At first, the philosopher is at thinking state. After a few seconds, he tries to eat

by the pickup_forks() function, and keep eating for a few seconds. The time is

generated by rand() function. And at the end of eating, he resumes to the thinking

state by the return_forks() function.

4. Pickup_fork function

When a philosopher is going to eat, the state of him is change to hungry, and we

use the test() function to check if he could eat successfully. If he couldn’t eat due to

the constraints, we make the thread wait for the signal to continue.

5. Return_fork function

When a philosopher ends his eating, we resume his state to thinking. Since we

also have to return the forks he got, that is, the neighbors of him could have the

chance to eat, we test the two neighbors of this philosopher.

6. Test function

In the test function, we are requested to check if the philosopher could eat

successfully. So, we check the two neighbors if they’re eating and if this philosopher

is hungry (ready to eat). If the check success, we change the state to eating, and signal

the condition variable to resume the process which might be suspended.

Execution results:

