Linux Kernel Module for
Listing Tasks

* In this project, you will write a kernel module that lists all current
tasks in a Linux system.

Part |—Iterating over Tasks Linearly

* Design a kernel module that iterates through all tasks in the system
using the for_each_process() macro(in <linux/sched/signal.h>).

* In particular, output the process id, task name (known as executable
name), and state of each task.

* You will probably have to read through the task_struct structure in
<linux/sched.h> to obtain the names of these fields.

* Write this code in the module entry point so that its contents will
appear in the kernel log buffer, which can be viewed using the dmesg
command.

@pj-VirtvalBox: ~

o

Module removed.
y Q0000
|pname: systemd |state: 1
|pname: kthreadd |state: 1
|pname: kworker/@:0H |state:
|pname: mm_percpu_wq |state:
|pname: ksoftirgd/e |state: 1
|pname: rcu_sched |state: 1026
|pname: rcu_bh |state: 1026
|pname: migration/@ |state: 1
|pname: watchdog/@ |state: 1
|pname: cpuhp/@ |state: 1
|pname: kdevtmpfs |state: 1
|pname: netns |state: 1026
|pname: rcu_tasks_kthre |state: 1
| pname: kauditd |state: 1
khungtaskd |state: 1
oom_reaper |state: 1
writeback |state: 1026
kcompactde |state: 1
ksmd |state: 1
hugepaged |state: 1
crypto |state: 1026
integrityd |state: 1026
kblockd |state: 1826
ata_sff |state: 1026
md |state: 1026
edac-poller |state: 1026
devfreq_wq |state: 1026
watchdogd |state: 1026
kswapde |state: 1
ecryptfs-kthrea |state:
kthrotld |state: 1026
acpi_thermal_pm |state:
scsi_eh 0 |state: 1
scsi_tmf_@ |state: 1026
scsi_eh_1 |state: 1
scsi_tmf_1 |state: 1026
ipv6_addrconf |state: 1826
kstrp |state: 1026
charger_manager |state: 1026
kworker/0:1H |state: 1026
scsi_eh_2 |[state: 1
scsi_tmf_2 |state: 1026
jbd2/sdal-8 |state: 1
ext4-rsv-conver |state:
systemd- journal |state:
systemd-udevd |state: 1
systemd-timesyn |state:
iprt-vBoxWQueue |[state:
ttm_swap |state: 1026
rsyslogd |state: 1
accounts-daemon |state:
snapd |state: 1
systemd-logind |state: 1

i JiE JOOY | Jlo

£
a

J BRI R
0~ o

[

 To verify that your code is working correctly, compare the contents of
the kernel log buffer with the output of the following command,
which lists all tasks in the system: ps —el

* The two values should be very similar. Because tasks are dynamic,
however, it is possible that a few tasks may appear in one listing but
not the other.

Part Il—Iterating over Tasks with a Depth-
First Search Tree

* The second portion of this project involves iterating over all tasks in
the system using a depth-first search (DFS) tree.

e Examining the task struct in <linux/sched.h>, we see two struct list
head objects: children and sibling.

* These objects are pointers to a list of the task’s children, as well as its
siblings.

* Beginning from the init_task, design a kernel module that iterates
over all tasks in the system using a DFS tree.

e Just as in the first part of this project, output the pid, name, and state
of each task.

e Perform this iteration in the kernel entry module so that its output
appears in the kernel log buffer.

pj@pj-VirtualBox: ~

whDEDDD O H®

L

oading module...
id: 1 | pname: systemd | state: 1
systemd-journal | state: 1
systemd-udevd | state: 1
systemd-timesyn | state:
rsyslogd | state: 1

4899 |

pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:

accounts-daemon

snapd | state: 1
systemd-logind |
acpid | state: 1

s

state:

tate: 1

avahi-daemon state: 1
avahi-daemon | state: 1

cron | state: 1

dbus-daemon state: 1

NetworkManager |
dnsmasq | state:
dhclient | state

765 | pname: polkitd | state:
778 | pname: lightdm | state:

792 |

pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:
pname:

Xorg | state: 1

5
!
!
!

tate: 1

1

lightdm | state: 1

upstart | state:

l

upstart-udev-br | state:
dbus-daemon | state: 1

window-stack-br

state:

upstart-dbus-br | state:

upstart-dbus-br
upstart-file-br

state:
state:

bamfdaemon | state: 1
ibus-daemon | state: 1
ibus-dconf | state: 1
ibus-ui-gtk3 | state: 1
ibus-engine-sim | state:

gvfsd | state: 1

gvfsd-fuse | state: 1
ibus-x11 | state: 1

at-spi-bus-laun

state:

dbus-daemon | state: 1

at-spi2-registr

state:

gpg-agent | state: 1
hud-service | state: 1

unity-settings-

state:

gnome-session-b | state:

polkit-gnome-au

state:

nm-applet | state: 1
gnome-software | state: 1

nautilus | state
unity-fallback-
zeitgeist-datah
update-notifier
deja-dup-monito
unity-panel-ser
indicator-messa
indicator-bluet
indicator-power

1

state:
state:
state:
state:
state:
state:
state:
state:

7,

1

LR e e e e

* To check the output of the DFS tree, use the command ps -eLf

e Hw2_ {studentID}.rar:

* hw2_linear.c (40%)

* hw2_dfs.c (40%)

* hw2_report(20%)

* Tell us how you implement your homework in detail and show us your results.

* 0O will be given to cheaters, so don’t copy & paste your friend’s
code directly.

e Deadline:4/14(Sun.) 23:59

